تخمین حالت و همتراز سازی مدل های سه بعدی با کمینه سازی تابع خطا در تصاویر سایه نما

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشگاه صنعتی سهند، دانشکده مهندسی برق، آزمایشگاه تحقیقاتی بینایی کامپیوتر

چکیده

امروزه با توجه به رشد روز افزون مدل¬های سه بعدی در رسانه های دیجیتال و به خصوص اینترنت، نیاز به یک سیستم یک پارچه جستجوی مدل های سه بعدی به شدت احساس می شود.  از آنجائیکه بسیاری از توصیف گرهای مورد استفاده در این زمینه نسبت به تغییرات و تبدیلات تشابه، بدون تغییر نیستند، هم تراز کردن مدل های سه بعدی یکی از مهمترین گام های رسیدن به یک سیستم بازیابی و یا تشخیص مدل های سه بعدی با دقت بالا می باشد. بنابراین، در این مقاله، روشی برای تخمین حالت های مختلف یک مدل سه بعدی مثلثی در فضای سه بعدی با استفاده از الگوریتم بهینه سازی Nelder-Mead، ارائه می شود. روش ارائه شده در این مقاله به این صورت می باشد که پس از انجام استانداردسازی  مدل های مورد بررسی به لحاظ موقعیت و تغییرات مقیاس، به منظور هم ترازسازی  مدل های سه بعدی از نقطه نظر چرخش، در هر کلاس از مدل های موجود در پایگاه داده مورد بررسی، یکی از مدل های سه بعدی به عنوان الگو در نظر گرفته شده و بقیه مدل ها طوری در فضای سه بعدی دوران داده می شوند که به بهترین حالت ممکن برای انطباق با مدل الگو دست یابند. تابع هزینه ای که در الگوریتم مذکور بهینه می شود برابر میزان اختلاف مساحت سایه نماهای حاصله از مدل سه بعدی مورد نظر در زاویه های دید متناظر است. جهت بررسی صحت روش ارائه شده، از مدل های سه بعدی موجود در پایگاه داده McGill، استفاده شده است. نتایج کمی به دست آمده از آزمایشهای مختلف، بیانگر موفقیت الگوریتم پیشنهادی در هم تراز سازی مدل های مورد بررسی می باشد. بطور مثال، برای مدل سه بعدی هواپیما با بکارگیری تصاویر سایه نما با ابعاد 256*256پیکسل، خطای کمینه (مجموع مساحت ناحیه غیر همپوشان سایه نماهای متناظر) در بهترین حالت به مقدار 36437 پیکسل می رسد که این خطا معادل 8/6%  مجموع مساحت سایه نماهای دو مدل سه بعدی مورد بررسی (ثابت و متحرک) می باشد.

کلیدواژه‌ها