• صفحه اصلی
  • مرور
    • شماره جاری
    • بر اساس شماره‌های نشریه
    • بر اساس نویسندگان
    • بر اساس موضوعات
    • نمایه نویسندگان
    • نمایه کلیدواژه ها
  • اطلاعات نشریه
    • درباره نشریه
    • اهداف و چشم انداز
    • اعضای هیات تحریریه
    • همکاران دفتر نشریه
    • اصول اخلاقی انتشار مقاله
    • بانک ها و نمایه نامه ها
    • پیوندهای مفید
    • پرسش‌های متداول
    • فرایند پذیرش مقالات
    • اخبار و اعلانات
  • راهنمای نویسندگان
  • ارسال مقاله
  • داوران
  • تماس با ما
 
  • ورود به سامانه ▼
    • ورود به سامانه
    • ثبت نام در سامانه
  • English
صفحه اصلی فهرست مقالات مشخصات مقاله
  • ذخیره رکوردها
  • |
  • نسخه قابل چاپ
  • |
  • توصیه به دوستان
  • |
  • ارجاع به این مقاله ارجاع به مقاله
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • اشتراک گذاری اشتراک گذاری
    CiteULike Mendeley Facebook Google LinkedIn Twitter
مجله ماشین بینایی و پردازش تصویر
arrow مقالات آماده انتشار
arrow شماره جاری
شماره‌های پیشین نشریه
دوره دوره 5 (1397)
شماره شماره 2
شماره شماره 1
دوره دوره 4 (1396)
دوره دوره 3 (1395)
دوره دوره 2 (1394)
دوره دوره 1 (1392)
جوانمردی, شیما, زارع چاهوکی, محمد علی. (1397). پالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق. مجله ماشین بینایی و پردازش تصویر, 5(1), 39-52.
شیما جوانمردی; محمد علی زارع چاهوکی. "پالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق". مجله ماشین بینایی و پردازش تصویر, 5, 1, 1397, 39-52.
جوانمردی, شیما, زارع چاهوکی, محمد علی. (1397). 'پالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق', مجله ماشین بینایی و پردازش تصویر, 5(1), pp. 39-52.
جوانمردی, شیما, زارع چاهوکی, محمد علی. پالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق. مجله ماشین بینایی و پردازش تصویر, 1397; 5(1): 39-52.

پالایش شرح گذاری مجموعه تصاویر با مقیاس بزرگ با یادگیری انتقالی در شبکه عصبی کانولوشنال عمیق

مقاله 34، دوره 5، شماره 1، بهار و تابستان 1397، صفحه 39-52  XML اصل مقاله (1.59 MB)
نوع مقاله: مقاله پژوهشی
نویسندگان
شیما جوانمردی1؛ محمد علی زارع چاهوکی email 2
1دانشجوی دکتری مهندسی کامپیوتر گرایش هوش مصنوعی، دانشکده برق و کامپیوتر، دانشگاه یزد
2دانشکده مهندسی برق و کامپیوتر، دانشگاه یزد
چکیده
فرآیند پالایش شرح ­گذاری تصاویر، رویکردی موثر در بهبود بازیابی تصاویر مبتنی بر برچسب می‌باشد. در شبکه ­های اجتماعی و موتورهای جستجو بسیاری از تصاویر دارای تگ ­های مبهم، ناقص و بی­ ارتباط با محتوا هستند. وجود این تگ ­های غیرقابل اعتماد، موجب کاهش دقت بازیابی تصاویر می ­شود. از این­رو در دهه اخیر، الگوریتم ­هایی با عنوان پالایش تگ (TR) مطرح شده‌اند که به رفع نویز و غنی‌سازی برچسب‌های تصاویر می‌پردازند. به ­منظور دستیابی به نتایج بهینه در TR، استخراج ویژگی­ هایی از تصویر که توصیف مناسبی از محتوای دیداری تصویر داشته باشند، تاثیر مستقیمی بر دقت فرآیند TR دارد. از جمله چالش ­های عمده در فرآیند پالایش شرح ­گذاری تصاویر، رسیدن به توصیفی مناسب و مرتبط با محتوای تصاویر می­باشد. بدین منظور با توجه به کارآمدی فرآیند یادگیری عمیق در بسیاری از حوزه ­های پژوهشی، در این مقاله نیز به منظور استخراج ویژگی­ های کارآمد در تشابه دیداری تصاویر و ارتباط معنایی تصاویر با هم، از شبکه ­های عصبی کانولوشنال عمیق (DCNN) استفاده شده ­است. بهره ­گیری از فرآیند یادگیری انتقالی استفاده شده در DCNN مبتنی بر تصاویر ImageNet در توصیف و ایجاد ارتباط معنایی در مجموعه تصاویر با مقیاس بزرگ NUS-WIDE، بیانگر موثر بودن این رویکرد در کاربرد پالایش تگ تصاویر است.
کلیدواژه‌ها
پالایش شرح گذاری تصاویر؛ شبکه عصبی کانولوشنال عمیق؛ پالایش تگ؛ بازیابی تصاویر؛ یادگیری انتقالی
مراجع
آمار
تعداد مشاهده مقاله: 448
تعداد دریافت فایل اصل مقاله: 2,765
صفحه اصلی | واژه نامه اختصاصی | اخبار و اعلانات | اهداف و چشم انداز | نقشه سایت
ابتدای صفحه ابتدای صفحه

Journal Management System. Designed by sinaweb.